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N SUMMARY
\
\ng For the proportional hazards model of survival analysis, an
appropriate large sample theory is developed for cases of staggered
entry and sequential analysis. The principal techniques involve an
approximation of the score process by a suitable martingale and a
random rescaling of time based on the observed Fisher information. As
a result we show that the maximum partial likelihood estimator behaves !
: asymptotically like Brownian motion._-
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SEQUENTIAL ANALYSIS OF THE PROPORTIONAL HAZARDS MODEL

T. Sellke and D. Siegmund
Stanford University

1. Introduction

The proportional hazards model of survival analysis and its analysis
by the method of partial likelihood originate in the vairk of Cox (1972,
1975), who argued that under general conditions maximum partial l1ikelihood
estimators have asymptotically normal distributions very similar to the
asymptotic distributions of ordinary maximum likelihood estimators. Since
then a number of authors have given more systematic discussions of central
limit results for survival analysis. See Gill (1980), Tsiatis (1981a),
and Andersen and Gill (1981). | -

In this paper we are concerned with related questions in the context
of controlled clinical trials which possess the following two important
features: (a) entry into the trial occurs at different times for different
patients and (b) it seems desirable to observe the data sequentially so
that the trial may be terminated at the earliest possible moment, if large
treatment effects appear to be present. The authors cited above use as
their starting point Cox's observation that the derivative of the log
partial likelihood is a martingale, to which an appropriate martingale
central limit theorem may be applied. However, with sequential observa-
tion and staggered entry, this process is no longer in general a martin-
gale, and the approach breaks down. We shall show that it can be approxi-

mated by a martingale uniformly in time, in order to conclude that the
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process of maximum partial likelihood estimates observed in a certain time
scale behaves like a Brownian motion process.

Previous work on this problem seems to be limited to a Monte Carlo
study by Gail, DeMets, and Slud'(1981), the paper of Tsiatis (1981b),
and a recent manuscript of Slud (1982). Although Slud is concerned with
the special case of testing a simple null hypothesis, there is some over-
lap with our work, which we discuss later.

The results of this paper are not unexpected. However, it is quite
surprising to find their complete justification to be so difficult, parti-
cularly in comparison to proofs of the superficially similar results of
the authors cited above. In this regard it is interesting to note that
Jones and Whitehead (1979) are willing to accept a cursory justification

for related results, which they regard as almost obvious and propose to

use as a basis for certain sequential tests. For the somewhat related
Gehan test they offer a similar informal argument, but according to Slud
and Wei (1982), their conclusion is incorrect in this case. Our methods

do not provide satisfactory results concerning the joint cdistribution of
the Gehan statistic, which seems to involve a substantially more difficult
problem. The multivariate case is also more difficult - even in its formu-

lation - and our results here are not yet complete.

2. Notation and Fornulatioh of the Problem

Assume that n patients enter a clinical trial at times Yy» Yoo ceos

Yo which may be nonrandom or occur according to an arbitrary point process.

h

Associated with the 1t patient is a triple (zi, Xs» ci). where 24 is s

covariate, X is the survival time following entry into the trial, and N




(possibly infinite) is a censoring variable. Thus the 1th person is on
test until time y, + x;Ac;. If x; < c,, he dies while on the test,

and the value of x; is recorded. Otherwise that observation is censored
and it is known only that X; > cy. (At any time t there is in effect a
second censoring variable (t-yi)+ in the sense that the time on test of
patient i prior to t is xiAciA(t-yi)*. We shall refer to X35 C4» and

th patient at death, at cen-

(t-yi)+ as "age" variables - the age of the i
soring, and at time t respectively.

Our basic stochastic assumptions are that (zi, X;» ci). i=l, 2, ..., n
are independent and identically distributed and are independent of the arri-
vals Yyr 2oer Yyo Ne assume also that the z, are uniformly bounded and
that given 25 X and c; are conditionally independent with X3 having
a cumulative hazard function of the form

. Bz
(1) dh;(s) = e ~ A(s)ds ,
for some unknown parameter f and baseline hazard function A,
For some results z; can be a vector; then B is also, and Bzi denotes
the scalar product. For simplicity of presentation we consider explicitly
only the scalar case.

All probabilities and expectations should be considered as conditional,
given Yys Yoo cees Ypo

It is convenient to introduce the notation

(2) Ny (t,s) = (s<t)

I{y1+x£5;. RO xigg}

to indicate that the i*" patient arrived and died before time t, that he
was uncensored and was of age < s at the time of death. We also define

the set of patients at risk at time t and age s by




3) R(t,s) = {i: y; £ t-8, XAc, > s} (s<t). ]
With this notation Cox's (1975) log partial likelihood for B can be
expressed by 1

Bz.
{Bzi - log( e N} N; (¢, ds) .

n
“4) & _(t,B) =
n ) jeR(t,s)

% . i=l J[o,tl

Differentiating (4) with respect to B8 gives the score process

b Bz, 1
| 7 jere,s) 3 ¢
() &.(t,B) = I z, - L<R(E28) N (t, ds) .
n 121 o,e1 | * B2 1

3 | jeR(E, )

The maximum partial likelihood estimator of B is the solution g = ﬁn(t)
of

Bnc,8) = 0.

Tests of the hypothesis Ho; B-Bo can be based on § or directly on

in(t,Bo). The usual Taylor series approximation
) 0=4 (t,8) =} (t,8) + B-B) & (t,8) + ...

indicates that the asymptotic behavior of ﬁ is intimately associated

with that of ln(t,B), which we now consider.

Let Ft s denote the class of events at time t and age s, i.e.
»

Fe,s i3 tne o-algebra gemerated by Ipy o). Yilfy 1) %il{y «xds

1 + x,I + '
{x;<(t-y;)"asac,}’ 17 {x <(t-y;) Tasacy}, I{ci<(t-yi)+AsAXi}'

cil{c1<(t-yi)+A3Axi}’ i=1, 2, ..., n. For each i=1, 2, ..., n, by (2),

(3), and the conditional independence of N and Xss given zZ;, as &0

e ey e—ae s o= -
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E(N; (t, s+b) - N;(t,9)[F, )

P{cizplzi} Plx, € dulzi}

- I{ieR(t,s)} I(s,sm] W +0() ,

so at least under the additional assumption of continuity of the condi-

tional distributions of 5 given z;,
() BIN;(t,s+8) - Ni(t,8)[F [} = Ipy pip g3y (A3(s48) - Ay(8)} + 0(8) ,

vhere Ai is given by (1). It follows from (7) that for any fixed t,
+
(8) {Ni(t,s) - Ai{(t'yi) AxiAciAs}, Ft,s}

is a martingale in s (cf. Gill, 1980, p. 14 or Lipster and Shiryayev,
1978, p 245).

Let Ai(t,ds) = I{ieR(t,s)} Ai(ds) and

n . z Zje
2, - ER(t,u) (N, (t,du) - A, (t,d0)} .

(9) i (t,s,B) = J
n 121 {o,s]

jeR(t,u)

1t follows from (5) and simple algebra that
B (e,e,8) = % (.8) .

Moreover, the stochastic integral in (9) inherits the martingale property

of (8), so for each fixed t

(10)

,(t,s,8), F, )




is a martingale in s (Gill, 1980, p. 10 or Lipster and Shiryayev, 1978,
p. 268).

This martingale property in s of in(t,s,s) has been the fruitful
starting point for an analysis of the asymptotic normality of in(t,B) =
in(t,t,B) at one fixed point in time (cf. Gill, 1980, or Andersen and
Gill, 1981). However, it does not provide useful information about the
joint distribution of in(t,B) at different values of t. It is easy
to show by examples that for general entry times the process in(t,B)
is not a mértingale in t, and hence it is necessary to uncover some
additional structure before considering central limit theorems.

Let Ni(t) = Ni(t,t) and Ft = Ft,t' An argument similar to that

leading to (7) shows that
(11) E{N, (t+4) - N; (8) [F .}

= HMier(e, (t-y*) {A; (t-y5+8) - Aj(t-y;)} + 0(8) .

Hence, with the notation Ai(dt) = I{ieR(t,(t-yi)*)} Ai(dt-yi), we see

that
(12) {Ni(t) - Ai(t), Ft}

is a martingale in t.

Often stochastic integration with respect to the martingale in (12)
preserves the martingale property (cf. Lipster and Shiryayev, 1978, p. 268).
More precisely for our purposes we have

Lemma 1. Assume h;(s) is bounded, Fs-leasurable, and left continu-

ous in s. Then
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{J[O,t] h; (s) (N, (ds) - A;(ds)}, F,)

is a martingale in t.

By a change of variable in (9)

Bz
z. © j
X 'Z‘ jer(t,u-y;) ? . :
(13) £ (t,B) = J z, - N, (du) - A, (du)} .
n i=1 /(0,81 | B 1 1

jGR(t,u-)'i)

Although (13) is a stochastic integral, Lemma 1 does not apply because the
integrands are not Fu-measurable and they depend on t. However, an
informal law of large numbers argument suggests that these integrands are

approximately

gz
E(z1 e : xlAc1 > u-y;

zZ, - 1 »
i Bz, (yi<u}

E(e ~; X Ac, 3_u-yi)

which does not depend on t; and according to Lemma 1

Bz
() 1n1 j[o a Vi E(ZIB: 2y {N; [@u) - A, (dw)}
= 't] E(e 1; X Acy > u—yi)
le
. f J z, - i T U (N, (t,ds) - A, (t,ds)}
is1 ‘{0,t] 8z, 1 1

E(e °; X, Ac, > s)

is a martingale in t.

In broad outline the goals of the rest of this paper are to show that
the martingsle in (14) is a good approximation to the score process (13)
uniformly in t as m® (Theorem 1), and to apply a iartingale central

1imit theorem to show that (14) (and hence (13)) suitably rescaled behave
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like a Brownian motion process asymptotically as n+ (Theorem 2). Finally
the asymptotic behavior of B is related to that of in(t,B) via (6) and a

consistency argument (Theorem 3).

Before proceeding with the technical developments to follow, we make
some remarks related to the asymptotic rescaling of the martingale (14).
In order that (14) behave asymptotically like a Brownian motion process
it is important that its 'quadratic variation" or its '"predictable quad-
ratic variation'” grow approximately linearly in t. (See Meyer, 1976,
P. 267 for the definition of these terms in general and (33) for the
special case of (14).) For (14) this linear growth does not occur in
the time scale t, and it is convenient to introduce a data dependent
transformation of time to obtain the desired linearity. From a statistical
point of view the natural mechanism to effect this change of time is the
observed Fisher information or minus the second derivative of the log
(partial) likelihood, -En(t,B), vwhich will be shown to be essentially the

same as the quadratic variation of (14). Hence, for v > 0 let
(@15) T,(v,8) = inf{t: -in(t,B) > vn} .
Theorem 2 of Section 4 asserts that
-3 4
(16) n* & (1 (v,B), B) + W(V) ,

where N is a standard Brownian motion. Of course, in practice one must
actually use the observable quantity Tn(v,ﬁ) to define the time scale.
See Grambsch (1982) or Lai and Siegmind (1982) for discussions of the use
of Fisher information as a means of rescaling time.

It is worth noting that much of the preceding discussion generalizes

ismediately to several dimensions. However, the rescaling of time indicated




by (15) and (16) carries over directly only if all elements of the matrix

-in(t,B) have the same growth rates in t for large n. Except when

TS PR

=0 this is typically not the case.
We now turn to a detailed analysis of the approximation of (5) by

(14). A more thorough discussion of (16) is contained in Section 4.

3. Approximation of in(t,B) by the Martingale (14).

Theorem 1. Let Rn(t) denote the difference between the martingale

in (14) and in(t,B) given by (5) or equivalently by (9) with s=t. Then

for arbitrary € > 0, as n»o

# P{ sup |R ()] > en?) » 0 . ;
O<t<oo : '
The proof of Theorem 1 is a consequence of the following three lemmas.
L It will be convenient to use the notation:
Bz,
zj e
an fice,s) = LB(Es) (s < t)
e I
jeR(t,s)
and
821 ]
E(z1 e H xlAc1 > s)
18) u(s) =
821
E(e xlAcl.i s)

In (17) and (18) we interpret 0/0 as 0. With this notation

(19) R (t) = ] I {lice,s)-u(s)HN, (t,ds) - A, (t,ds)} .
i‘fo,t)




e A

Lemma 2. Uniformly in 0 <t <=
2
E Rn(t) = 0(log n) .

Proof. From fundamental properties of stochastic integrals

E Rﬁ(t) = E(Z [ {ﬁ(t,s)~u(s)}2 Ni(t,ds)) .
ilfo,t

th

By considering the i term and conditioning on x,, R(t,xi), and the

+ .
event {xi 5-ciA(t'yi) }, we obtain

(20) E erl(t) E(Z N, (t,x;) E[{ﬁ(t,xi)-u(xi)}zlxi. R(t,x;), x5 < (t-yi)*Acil)
1

N(t,x;) Bz

< const. E() ——3— E[{u.(x.) z,e 3
= glR(t,xi)lz 0™ jeR(Z,xi) i
) 1 e Dk, Reexy (t-y;)1)
~ M, (x. e X., R(t,x.), x. < c.A(t-y. »
1'71 jeR(t,xi) i i i—-"1 i

Bz
where 1 (s) = E(z: e 1lxlAc1 >s) for v=0 and 1, and [A| denotes the
*
cardinality of the set A. Let R.(t,s) =R(t,s) - {i}, and observe that
. + * . .
given x,, x; < c A(t-y;), and R, (t,x;) = {Jl, cees Jr}, zjf cens zjr are
independent and identically distributed with

8

Z.
j
v L * +
E(zjze Ix;0 Ry(6,%0), X < eiAlt-y;)7) = u,(x))

for v=0 or 1. Hence except for the terms involving i, the conditional

expectations on the right hand side of (20) involve the square of a sum of

i.i.d. random variables having mean 0. Hence




N, (t,x,) N; (t,x,)

E gn(t) < const. {B(z Tk(t x; 5r) 2 lk(t.xi)lz

= E[0{log ] N, (t,t)}] = 0(log n)
i

uniformly in t.

Lemma 3. Let 0<e<1/10 and 0=t ,<t, < ... <t = o

0 1 nl-Se *
Then P{ max IRn(tk)I > ni1-€)} . O(n'ze log n).
1<kenl~5€
The proof of Lemma 3 is an immediate consequence of Lemma 2 and Chebyshev's
inequality. It remains to make a specific choice of the points {tk} and

show that R (t) cannot change too rapidly between these points.

Let D = J
Z x-1°%)

during [tk_l,tk) and let

Ni(tk,ds-yi) denote the number of deaths observed

H = ) f A (t,, ds-y,)
170y ,0%)

denote the associated accumulated hazard. We choose the partition {tk, k=0,

1—36}

1, ..., n so that for all k

(21) ED < 2n°° .

Lemma 3 above and Lemma 4 below complete the proof of Theorem 1.

Lemma 4. P{max max [R_(t)-R (t, 1)l > n%(l'e)} + 0 as mw,
—_— kot <tet, n n' k-

Proof. Note that if B(p) is a Bernoulli variable with parameter p,
then for p < %, B(p) is stochastically smaller than a Poisson variable
with parameter 2p, say P(2p). Hence for all 0 < p <1, B(p) is stochas-

tically smaller than 2p + ?(2p). Since D, is a sum of independent

11




Bernoulli variables, it follows from (21) that Dk is stochastically

smaller than 4n3e * ?(4n3€). Hence by easy large deviation estimates
(22) P{max D, > 0% 4o (noe) .
k

On {Hk 3_n4e} D, is stochastically larger than a Poisson random variable

4¢ 7e/2

of mean n and hence P{D, < n

From this and (22) it follows that

(23) Plmax H_> n'%} » 0 (o) .
k
Let t _, <t<t. By (19)
(2¢) R (t)-R (t, ) = I {fit,s)-u(s)} {N(t,ds)-A(t,ds)}
+ J {ﬁ(t,s)-u(s)}{N(t,ds)-A(t,ds)-N(tk_l,ds)OA(tk_l,ds)}
(0,8, 1)
+ {fi(e,s)-f(t, _,,8)HN(t, ,,ds)-A(t, ,,ds)} ,
I[o’tk-l) k-1 k-1 k-1

where we have used the notation

N(t,ds) = ] N, (t,ds), A(t,ds) = { A (t,ds) .
i

By assumption the z, are bounded and hence {i(t,s) and u(s) are bounded.
Since N(t,ds) - N(tk-l,ds) and A(t,ds) - A(tk_l,ds) are both positive
and increasing in t, it follows that the first two terms on the right

hand side of (24) are of order Dkﬂlk uniformly in te1 <t< tk' Hence
by (22) and (23) it suffices to consider the third integral in (24). Let

12

» B > n4€} < P{P(n‘e) < n’¢/2y O(n'l).
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gz
(25) n(t,s) = o J
jeR(t,s)
and observ'e that
(26) A(t,ds) = n(t,s) A(s)ds .

Letting B/2 denote a bound on the 2,5 W find from (17) and some algebra

that uniformly in t, ., <t <t

k-1 k
27 e, )ity _;,9)| < Bim(r,,8)-m(t, _;,.9)}/n(e,,s) .

Hence by (24) and (27) it suffices to show

(28) Nux[ [{m(ty,5)-n(t,_,,5)}/m(t,,8)] N(t,_;,ds) > n* 1S} 4o
k J1o,e, )

and

(29 Pomax | [n(ty,8)-n(t,_;,5)}/a(t,,9)] Alty_;.d8) > 0} 40,

k ‘1ot )

From (26) and some algebra we see that the random variable in (29) is major-
ized by max Hk’ so (29) follows from (23).
k
Now consider (28). It is easily seen by direct calculation that
L (s) = ][o | 10 - a0 H/aCeye0)] Nty b0
S

- {N(t,,3) - N(t,_,.9))

is a supermartingale for 0 <'s <ty which changes by jumps downward of
size 1 and upward of size at most equal to 1. Furthermore, N(t,,t, ;)
- N(tk-l’tk-l)-s Dk' so by (22), to prove (28) it suffices to show

13
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(30) Plmax L (¢, ;) > ')+ 0.
k

Let S° = 0, and for j=1, 2, ... let
S5 = infls: s > 8; 15 L(s) - L (S5 4) > 1or< o}

where it is understood that inf ¢ = tk-l‘ Obviously -1 < Lk(sj) - Lk(sj-l)

< 2, and from the supermartingale property we see that on {Sj_1 < tk-l}

and hence

(31) P{sj <t g (S - L(8y ) 2 1|F } <12,

txe55-1
It follows from (31) that between downward jumps the total increase of
Lk(s) is stochastically smaller than 1l+y, where P{y=m} = (1/2)-‘1,

=0, 1, ... . Since the total number of downward jumps is Dk' an easy

large deviation estimate gives
p{Lk(tk-l) 3.n4e, D, 5_n7e/2} - o(n'l) .
Hence by (22)
7e/2}

P{-;x L( ) > n'€) < P{l:x D, > '€/ o 1P () > n'e, D, <n
k

>0 as mwe,

4. Convergence to Brownian Motion

In this section we give a precise interpretation of (16) and indicate
its proof. Let Qn(t,8) denote the martingale in (14), which in the nota-

tion of Section 3 can be written

T e




(32) Q,(t,B) = ; I[o,t] {’1 - u(s-yi)} {Ni(ds) - Ai(ds)}

- )i: I[o,t] {zi - u(s)} {Ni(t,ds) - Ai(t,ds)} .

It follows from the first representation of Qn in (32) and the independence of the

different terms that the predictable quadratic variation of the Martingale Qn is

(33) I {z,-u(s-y, A, (ds) = J {z,-u(s)}? A, (t.,ds) .
% {o,t] i i i ; fo,t] : i
le X, Ac, 2
Let v = Ele J {zl-u(s)} A(s)ds) and note that by the law of large
0
numbers

-1 2
nt ) I {z,-u(s)}° A, (»,ds) + v
ilto,=) i i £
in probability. Hence for 0 < v < Ve and Tn(v,B) defined by

T (v,8) = inflt: n' | (z,-u()}? A (t,ds) > V)

i I[(),t]

we have P{'l‘n(v,B) <w}+1 and

(34) {zi-u(s)}z Ai(t,ds) +v

n'lz I
i o1 (v.80)

in probability. It follows from (34) and the form of the martingale central
limit theorem given by Rebolledo (1980, p. 273, Proposition 1) that for

every 0 < v « Ve
(35) | ¥ q (1 (-8), &) 3w

on [0,v] as n», where W is a standard Brownian motiom.

15
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This result is unsatisfactory for statistical purpc.es because (33)
is not an observable random variable - even under a simple null hypothesis,

when B8 1is assumed to be known. Consider now i

(36) <% (¢,8) = ] : 8%(t,5) N(t,ds) , ‘
,t
i
where i
Bz. Bz ‘
e e § Gy -Eesie e 7,
jeR(t,s) jeR(t,s)

and let 'tn(v,B) be defined by (15).

Theorem 2. For each 0 < v < Ve

P{'rn(v,B) < w} 1

and on (0,v]

37) i .80, 8) T He)

where N{(*) 1is standard Brownian motion.

The key tools in the proof of Theorem 2 are Theorem 1, which shows
that it suffices to prove (37) with Qn in place of in' and Lemma 5
below, which shows that (34)holds with &  in place of T , so the mar-
tingale central limit theorem applies to yield (35) with Th in place
of T n’

Lemma 5. For small positive ¢, as n»

" 2 l-ey
() Plaaxly(e.8) + ] ][0 | nen? A eanl> o1 50

Proof. The proof is similar to Theorem 1, so we give only a general

outline. Observe that

16
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(39) R.n(t.B) + }13 I[o.t]{zi-u(s)} Ai(t,ds)

= I {ii(e,9)-u(s)1A(e .ds)-I 02(3){N(t.ds)-k(t.ds)}
[0,t} (0,t]

- I (5% (t,s)-0% (s) HN(t,ds)-A(t,ds)}
fo,t]
where

2 2 B4 Bz)
0°(s) = Ef{zj-u(s)}%e °; x, Ac,>sl/E(e "5 x,Ac,>s) .

Each of the terms on the right hand side of (39) can be estimated by techniques
similar to the proof of Theorem 1. For example, the third integral can be
split into a part involving a difference of second moments and a part involving
a difference of squares of first moments. The second moment piece is treated
directly by the techniques of Theorem 1; for the first moment piece we use
a.b? - (a+b) (a-b) and the boundedness of (a+b) in order to apply the

techniques of Theorem 1.

S. Discussion

In order to turn Theorem 2 into a statistically interesting,result,
one must (a) relate the behavior of the partial likelihood function given
in (37) to that of the maxisum partial likelihood estimator £ defined
by i (t,8) =0, and (b) replace B by B in (15), so that the desired
renormalization of time is accomplished by observable random variables.

This yields the main result of the paper.

17




Theorem 3. Let 0 < v < v, and
3, = infle: -E (e, B (6} > wn] .
For 0<_v,<v'<vf as o
40) (0B (£ () - B1 3 Wee)
or equivalently
(41) SR ACRON RCNODNCRCROHEYSERO

on [v,, v'].

We have omitted the proof of this theorem. Basically one combines
the results of Sections 3 and 4 with some Taylor series expansions to
prove the consistency of §, and then uses this consistency, (6), and
Theorem 2 to prove Theorem 3.

A consequence of Theorem 3 is that in the time scale determined by

B can be approximated by a Brownian motion process for the purpose

2
n’ "n

of sequentially testing statistical hypotheses about B or for estimating
8. Thus if we would be satisfied with a repeated significance test or a
truncated sequential probability ratio test for testing a hypothesis about
the drift of a Brownian motion process, we can obtain an analogous asymp-
totic test for 8.

Since n” W(v) and W(nv), 0 < v <« have the same joint distribu-

tions, it is tempting to rewrite (40) as
(42) nv{ﬁn{?n(v)} - 8] ~Nnv) for nv, < nv < nv*

and treat nv = u’' as one variable. A loose interpretation of (42) would

be that

e e
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(43) -i,(t, B ()} (B (v) - B}

behaves approximately like

¥ (44) wi-1 (e, 8 ()}

provided ':'.'n = -in{t, ﬁn(t)} is "large"”. Of course, the theorem speci-

fies that "large" means proportional to n with constants of proportion-

i ality bounded away from 0 and from v,.
In practice it is probably unnecessary to interpret the minimm

information requirement stringently. In fact, close scrutiny of the proof

1-8

of Theorem 2 shows that n in (15) could be replaced by n for suit-

sble small positive & and then the normalizing n~* in (37) would become
] n';’(l'c). Hence the approximation of (43) by (44) is valid for values of

- of smaller order of magnitude than n, but we do not know how much

smaller, We conjecture that with a proper reformulation it is possible
to give an interpretation to the approximation of (43) by (44) provided
| only that -L is large.

The maximum information requirement that -L n < nve is probably
more important and could conceivably cause some difficulty in practice,
since Ve is essentially never known. However, if the patient arrival
rate is sufficiently great and the experimental period comparatively short
so that some reasonable percentage of the total number put on test is still
slive at the end of the experiment, .10 problems should arise,

It seems desirable to conduct a Monte Carlo experiment to get some
feoling for the practical limitations of Theorem 3. For the related prob-
lem of testing the null hypothesis B=0, Gail, DeMets, and Slud (1981)
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conclude that the score statistic under the null hypothesis is reasonably
approximated by a Brownian motion. Their time renornnlizatioﬁ is not
appropriate for general B, however.

Slud's (1982) theoretical gpproachkis superficially similar to ours
in that he introduces a martingale to apﬁroxi-ate the score process of
the partial likelihood. His martingale is different from ours (although
it is a special case of the class of martingales described by Lemma 1).

He considers only the null hypothesis B=0 and uses a time renormalization
which would be inappropriate for general 8. Also what corresponds to our
Lemma 4 is essentially his assumption A.5. This assumption is never
actually verified although Slud states that it can be verified under vari-
ous sets of conditions, all of which require strong hypotheses on the
arrival process.

It is not obvious how one should generalize these results to multi-
dimensional PB. Except when RB=0, one cannot expect that the information
about the various coordinates of B accumulate at the same ratc, and hence
one cannot generalize (15) directly. In the case where one coordinate of
8 is a treatment indicator, it seems possible to study this one coordinate
sequentially by making a time change in terms of the residual variance of
its regression on the other coordinates. We hope to discuss this problem

in a future publication.
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